Tailwinds - The UI for AI
  • Welcome to Tailwinds
    • Chatflows
      • LangChain
        • Agents
          • Airtable Agent
          • AutoGPT
          • BabyAGI
          • CSV Agent
          • Conversational Agent
          • OpenAI Assistant
            • Threads
          • ReAct Agent Chat
          • ReAct Agent LLM
          • Tool Agent
          • XML Agent
        • Cache
          • InMemory Cache
          • InMemory Embedding Cache
          • Momento Cache
          • Redis Cache
          • Redis Embeddings Cache
          • Upstash Redis Cache
        • Chains
          • GET API Chain
          • OpenAPI Chain
          • POST API Chain
          • Conversation Chain
          • Conversational Retrieval QA Chain
          • LLM Chain
          • Multi Prompt Chain
          • Multi Retrieval QA Chain
          • Retrieval QA Chain
          • Sql Database Chain
          • Vectara QA Chain
          • VectorDB QA Chain
        • Chat Models
          • AWS ChatBedrock
          • Azure ChatOpenAI
          • NIBittensorChat
          • ChatAnthropic
          • ChatCohere
          • Chat Fireworks
          • ChatGoogleGenerativeAI
          • ChatGooglePaLM
          • Google VertexAI
          • ChatHuggingFace
          • ChatMistralAI
          • ChatOllama
          • ChatOllama Funtion
          • ChatOpenAI
          • ChatOpenAI Custom
          • ChatTogetherAI
          • GroqChat
        • Document Loaders
          • API Loader
          • Airtable
          • Apify Website Content Crawler
          • Cheerio Web Scraper
          • Confluence
          • Csv File
          • Custom Document Loader
          • Document Store
          • Docx File
          • Figma
          • FireCrawl
          • Folder with Files
          • GitBook
          • Github
          • Json File
          • Json Lines File
          • Notion Database
          • Notion Folder
          • Notion Page
          • PDF Files
          • Plain Text
          • Playwright Web Scraper
          • Puppeteer Web Scraper
          • AWS S3 File Loader
          • SearchApi For Web Search
          • SerpApi For Web Search
          • Spider Web Scraper/Crawler
          • Text File
          • Unstructured File Loader
          • Unstructured Folder Loader
          • VectorStore To Document
        • Embeddings
          • AWS Bedrock Embeddings
          • Azure OpenAI Embeddings
          • Cohere Embeddings
          • Google GenerativeAI Embeddings
          • Google PaLM Embeddings
          • Google VertexAI Embeddings
          • HuggingFace Inference Embeddings
          • MistralAI Embeddings
          • Ollama Embeddings
          • OpenAI Embeddings
          • OpenAI Embeddings Custom
          • TogetherAI Embedding
          • VoyageAI Embeddings
        • LLMs
          • AWS Bedrock
          • Azure OpenAI
          • NIBittensorLLM
          • Cohere
          • GooglePaLM
          • GoogleVertex AI
          • HuggingFace Inference
          • Ollama
          • OpenAI
          • Replicate
        • Memory
          • Buffer Memory
          • Buffer Window Memory
          • Conversation Summary Memory
          • Conversation Summary Buffer Memory
          • DynamoDB Chat Memory
          • MongoDB Atlas Chat Memory
          • Redis-Backed Chat Memory
          • Upstash Redis-Backed Chat Memory
        • Moderation
          • OpenAI Moderation
          • Simple Prompt Moderation
        • Output Parsers
          • CSV Output Parser
          • Custom List Output Parser
          • Structured Output Parser
          • Advanced Structured Output Parser
        • Prompts
          • Chat Prompt Template
          • Few Shot Prompt Template
          • Prompt Template
        • Record Managers
        • Retrievers
          • Cohere Rerank Retriever
          • Embeddings Filter Retriever
          • HyDE Retriever
          • LLM Filter Retriever
          • Multi Query Retriever
          • Prompt Retriever
          • Reciprocal Rank Fusion Retriever
          • Similarity Score Threshold Retriever
          • Vector Store Retriever
          • Voyage AI Rerank Retriever
        • Text Splitters
          • Character Text Splitter
          • Code Text Splitter
          • Html-To-Markdown Text Splitter
          • Markdown Text Splitter
          • Recursive Character Text Splitter
          • Token Text Splitter
        • Tools
          • BraveSearch API
          • Calculator
          • Chain Tool
          • Chatflow Tool
          • Custom Tool
          • Exa Search
          • Google Custom Search
          • OpenAPI Toolkit
          • Python Interpreter
          • Read File
          • Request Get
          • Request Post
          • Retriever Tool
          • SearchApi
          • SearXNG
          • Serp API
          • Serper
          • Web Browser
          • Write File
        • Vector Stores
          • AstraDB
          • Chroma
          • Elastic
          • Faiss
          • In-Memory Vector Store
          • Milvus
          • MongoDB Atlas
          • OpenSearch
          • Pinecone
          • Postgres
          • Qdrant
          • Redis
          • SingleStore
          • Supabase
          • Upstash Vector
          • Vectara
          • Weaviate
          • Zep Collection - Open Source
          • Zep Collection - Cloud
      • LlamaIndex
        • Agents
          • OpenAI Tool Agent
          • Anthropic Tool Agent
        • Chat Models
          • AzureChatOpenAI
          • ChatAnthropic
          • ChatMistral
          • ChatOllama
          • ChatOpenAI
          • ChatTogetherAI
          • ChatGroq
        • Embeddings
          • Azure OpenAI Embeddings
          • OpenAI Embedding
        • Engine
          • Query Engine
          • Simple Chat Engine
          • Context Chat Engine
          • Sub-Question Query Engine
        • Response Synthesizer
          • Refine
          • Compact And Refine
          • Simple Response Builder
          • Tree Summarize
        • Tools
          • Query Engine Tool
        • Vector Stores
          • Pinecone
          • SimpleStore
    • Agentflows
      • Multi-Agents (Supervisor/Worker)
      • Sequential Agents
    • API
      • Chatflows and APIs
    • Document Stores
    • Embed
      • Rate Limit
    • API Streaming
    • Analytics
    • Credentials
      • Amazon Bedrock Credential Setup
      • IBM Watsonx.AI Credential Setup
    • Variables
    • Utilities
      • Custom JS Function
      • Set/Get Variable
      • If Else
      • Sticky Note
    • Example Flows
      • Calling Children Flows
      • Calling Webhook
      • Interacting with API
      • Multiple Documents QnA
      • SQL QnA
      • Upserting Data
      • Web Scrape QnA
    • Monitoring & Auditing
      • Configuring Monitoring and Traces
    • Tailwinds Security and Deployment
  • Release Notes
    • 12/17/2024 - v2.2.1
    • 10/11/2024 - v2.1.2
    • 9/27/2024- v2.1
    • 8/16/2024 - v2.0.5
  • Demos and Use-cases
    • Create a Basic Chatbot
    • Build an AI-Powered Translator
    • Create research-powered call scripts
    • Extract information from Medical Documents
    • Identify ICD10 medical codes
  • GenAI University
    • Syllabus
    • 101-Prompt Engineering
    • 101-System Prompts
    • 101-Human (User) Prompts
    • 101-Context Window
    • 101-Prompt Chains
    • 201-Documents and Vector Databases (RAG)
    • 301-AI Agents
    • 301-Agent Tools
    • 401-Multi-Agent
Powered by GitBook
On this page
  • Key Concepts
  • Use Cases
  • Implementation Examples
  • Best Practices
  • Common Pitfalls and How to Avoid Them
  • Related Tailwinds Topics

Was this helpful?

  1. GenAI University

201-Documents and Vector Databases (RAG)

Previous101-Prompt ChainsNext301-AI Agents

Last updated 9 months ago

Was this helpful?

Documents and Vector Databases are crucial components in enhancing the capabilities of LLMs. This approach involves converting textual information from documents into numerical vectors and storing them in specialized databases. These vector databases allow for efficient similarity searches, enabling LLMs to quickly retrieve relevant information from vast document collections. This integration significantly improves an LLM's ability to provide accurate, context-specific responses by accessing and leveraging external knowledge beyond its training data.

Key Concepts

  • Document Embedding: The process of converting text documents into numerical vectors that capture semantic meaning.

  • Vector Database: A specialized database optimized for storing and querying high-dimensional vectors. Example solutions:

  • Semantic Search: Finding relevant information based on meaning rather than exact keyword matches.

  • Retrieval-Augmented Generation (RAG): Combining retrieved information with LLM generation to produce more informed responses.

  • Context Window Management: Efficiently incorporating relevant document snippets within the LLM's limited context window.

Use Cases

Use Case
Description
Benefit
Use Case
Description
Benefit
Use Case
Description
Benefit

Implementation Examples

Example: Basic Document Retrieval System

Best Practices

  1. Choose appropriate embedding models: Select models that are well-suited to your specific domain and use case for optimal performance.

  2. Regularly update document collections: Maintain the relevance and accuracy of your knowledge base by frequently updating and curating your document collections.

  3. Optimize similarity search algorithms: Choose and fine-tune similarity metrics that best capture the semantic relationships in your specific use case.

  4. Balance retrieval and generation: Find the right balance between retrieving information and generating responses to ensure accuracy without overly constraining the LLM's creativity.

  5. Implement context windowing: Develop effective strategies for managing the LLM's context window to incorporate the most relevant retrieved information.

Common Pitfalls and How to Avoid Them

  • Over-reliance on Retrieved Information:

    • Pitfall: The LLM becomes too dependent on retrieved documents, limiting its ability to generate novel insights.

    • How to avoid: Strike a balance between using retrieved information and allowing the LLM to draw upon its pre-trained knowledge. Experiment with different prompting techniques to encourage creative thinking.

  • Outdated Information:

    • Pitfall: The system provides responses based on outdated documents in the vector database.

    • How to avoid: Implement a regular update schedule for your document collection and develop a system for version control and document expiration.

  • Privacy and Security Concerns:

    • Pitfall: Sensitive information in the document collection is exposed through the LLM's responses.

    • How to avoid: Implement robust access controls, data anonymization techniques, and output filtering to ensure that sensitive information is protected.

Related Tailwinds Topics

  • GenAI University: 101-Prompt Chains

  • GenAI University: 301-Agent Tools

  • Tailwinds Feature: Vector Stores

  • Tailwinds Feature: Text Splitters

  • Tailwinds Feature: Conversational Retrieval QA Chain

  • Tailwinds Feature: Conversational Agent

Enterprise Search

Implementing a smart search system across company documents, emails, and databases.

Improves information discovery and knowledge sharing within organizations.

Research Assistant

Creating an AI-powered tool to analyze and summarize scientific papers or legal documents.

Accelerates research processes and enhances comprehension of complex topics.

Customer Support

Developing a chatbot that can access product manuals, FAQs, and support tickets.

Provides faster, more accurate responses to customer queries.

https://weaviate.io