Tailwinds - The UI for AI
  • Welcome to Tailwinds
    • Chatflows
      • LangChain
        • Agents
          • Airtable Agent
          • AutoGPT
          • BabyAGI
          • CSV Agent
          • Conversational Agent
          • OpenAI Assistant
            • Threads
          • ReAct Agent Chat
          • ReAct Agent LLM
          • Tool Agent
          • XML Agent
        • Cache
          • InMemory Cache
          • InMemory Embedding Cache
          • Momento Cache
          • Redis Cache
          • Redis Embeddings Cache
          • Upstash Redis Cache
        • Chains
          • GET API Chain
          • OpenAPI Chain
          • POST API Chain
          • Conversation Chain
          • Conversational Retrieval QA Chain
          • LLM Chain
          • Multi Prompt Chain
          • Multi Retrieval QA Chain
          • Retrieval QA Chain
          • Sql Database Chain
          • Vectara QA Chain
          • VectorDB QA Chain
        • Chat Models
          • AWS ChatBedrock
          • Azure ChatOpenAI
          • NIBittensorChat
          • ChatAnthropic
          • ChatCohere
          • Chat Fireworks
          • ChatGoogleGenerativeAI
          • ChatGooglePaLM
          • Google VertexAI
          • ChatHuggingFace
          • ChatMistralAI
          • ChatOllama
          • ChatOllama Funtion
          • ChatOpenAI
          • ChatOpenAI Custom
          • ChatTogetherAI
          • GroqChat
        • Document Loaders
          • API Loader
          • Airtable
          • Apify Website Content Crawler
          • Cheerio Web Scraper
          • Confluence
          • Csv File
          • Custom Document Loader
          • Document Store
          • Docx File
          • Figma
          • FireCrawl
          • Folder with Files
          • GitBook
          • Github
          • Json File
          • Json Lines File
          • Notion Database
          • Notion Folder
          • Notion Page
          • PDF Files
          • Plain Text
          • Playwright Web Scraper
          • Puppeteer Web Scraper
          • AWS S3 File Loader
          • SearchApi For Web Search
          • SerpApi For Web Search
          • Spider Web Scraper/Crawler
          • Text File
          • Unstructured File Loader
          • Unstructured Folder Loader
          • VectorStore To Document
        • Embeddings
          • AWS Bedrock Embeddings
          • Azure OpenAI Embeddings
          • Cohere Embeddings
          • Google GenerativeAI Embeddings
          • Google PaLM Embeddings
          • Google VertexAI Embeddings
          • HuggingFace Inference Embeddings
          • MistralAI Embeddings
          • Ollama Embeddings
          • OpenAI Embeddings
          • OpenAI Embeddings Custom
          • TogetherAI Embedding
          • VoyageAI Embeddings
        • LLMs
          • AWS Bedrock
          • Azure OpenAI
          • NIBittensorLLM
          • Cohere
          • GooglePaLM
          • GoogleVertex AI
          • HuggingFace Inference
          • Ollama
          • OpenAI
          • Replicate
        • Memory
          • Buffer Memory
          • Buffer Window Memory
          • Conversation Summary Memory
          • Conversation Summary Buffer Memory
          • DynamoDB Chat Memory
          • MongoDB Atlas Chat Memory
          • Redis-Backed Chat Memory
          • Upstash Redis-Backed Chat Memory
        • Moderation
          • OpenAI Moderation
          • Simple Prompt Moderation
        • Output Parsers
          • CSV Output Parser
          • Custom List Output Parser
          • Structured Output Parser
          • Advanced Structured Output Parser
        • Prompts
          • Chat Prompt Template
          • Few Shot Prompt Template
          • Prompt Template
        • Record Managers
        • Retrievers
          • Cohere Rerank Retriever
          • Embeddings Filter Retriever
          • HyDE Retriever
          • LLM Filter Retriever
          • Multi Query Retriever
          • Prompt Retriever
          • Reciprocal Rank Fusion Retriever
          • Similarity Score Threshold Retriever
          • Vector Store Retriever
          • Voyage AI Rerank Retriever
        • Text Splitters
          • Character Text Splitter
          • Code Text Splitter
          • Html-To-Markdown Text Splitter
          • Markdown Text Splitter
          • Recursive Character Text Splitter
          • Token Text Splitter
        • Tools
          • BraveSearch API
          • Calculator
          • Chain Tool
          • Chatflow Tool
          • Custom Tool
          • Exa Search
          • Google Custom Search
          • OpenAPI Toolkit
          • Python Interpreter
          • Read File
          • Request Get
          • Request Post
          • Retriever Tool
          • SearchApi
          • SearXNG
          • Serp API
          • Serper
          • Web Browser
          • Write File
        • Vector Stores
          • AstraDB
          • Chroma
          • Elastic
          • Faiss
          • In-Memory Vector Store
          • Milvus
          • MongoDB Atlas
          • OpenSearch
          • Pinecone
          • Postgres
          • Qdrant
          • Redis
          • SingleStore
          • Supabase
          • Upstash Vector
          • Vectara
          • Weaviate
          • Zep Collection - Open Source
          • Zep Collection - Cloud
      • LlamaIndex
        • Agents
          • OpenAI Tool Agent
          • Anthropic Tool Agent
        • Chat Models
          • AzureChatOpenAI
          • ChatAnthropic
          • ChatMistral
          • ChatOllama
          • ChatOpenAI
          • ChatTogetherAI
          • ChatGroq
        • Embeddings
          • Azure OpenAI Embeddings
          • OpenAI Embedding
        • Engine
          • Query Engine
          • Simple Chat Engine
          • Context Chat Engine
          • Sub-Question Query Engine
        • Response Synthesizer
          • Refine
          • Compact And Refine
          • Simple Response Builder
          • Tree Summarize
        • Tools
          • Query Engine Tool
        • Vector Stores
          • Pinecone
          • SimpleStore
    • Agentflows
      • Multi-Agents (Supervisor/Worker)
      • Sequential Agents
    • API
      • Chatflows and APIs
    • Document Stores
    • Embed
      • Rate Limit
    • API Streaming
    • Analytics
    • Credentials
      • Amazon Bedrock Credential Setup
      • IBM Watsonx.AI Credential Setup
    • Variables
    • Utilities
      • Custom JS Function
      • Set/Get Variable
      • If Else
      • Sticky Note
    • Example Flows
      • Calling Children Flows
      • Calling Webhook
      • Interacting with API
      • Multiple Documents QnA
      • SQL QnA
      • Upserting Data
      • Web Scrape QnA
    • Monitoring & Auditing
      • Configuring Monitoring and Traces
    • Tailwinds Security and Deployment
  • Release Notes
    • 12/17/2024 - v2.2.1
    • 10/11/2024 - v2.1.2
    • 9/27/2024- v2.1
    • 8/16/2024 - v2.0.5
  • Demos and Use-cases
    • Create a Basic Chatbot
    • Build an AI-Powered Translator
    • Create research-powered call scripts
    • Extract information from Medical Documents
    • Identify ICD10 medical codes
  • GenAI University
    • Syllabus
    • 101-Prompt Engineering
    • 101-System Prompts
    • 101-Human (User) Prompts
    • 101-Context Window
    • 101-Prompt Chains
    • 201-Documents and Vector Databases (RAG)
    • 301-AI Agents
    • 301-Agent Tools
    • 401-Multi-Agent
Powered by GitBook
On this page
  • Key Concepts
  • Use Cases
  • Implementation Examples
  • Best Practices
  • Common Pitfalls and How to Avoid Them
  • Related Tailwinds Topics

Was this helpful?

  1. GenAI University

401-Multi-Agent

Previous301-Agent Tools

Last updated 9 months ago

Was this helpful?

This is an Advanced technique,

Multi-Agent Systems in the context of Large Language Models (LLMs) involve the coordination and collaboration of multiple AI agents, each potentially specialized in different tasks or roles. These systems leverage the strengths of individual agents to tackle complex problems, simulate diverse perspectives, and create more robust and versatile AI solutions. Multi-agent architectures enable the division of labor, parallel processing, and the emergence of collective intelligence, significantly expanding the capabilities and applications of LLM-based systems.

Key Concepts

  • Agent Specialization: Assigning specific roles or expertise to different agents.

  • Inter-Agent Communication: Protocols and methods for agents to exchange information and coordinate actions.

  • Task Decomposition: Breaking down complex problems into subtasks that can be distributed among agents.

  • Consensus Mechanisms: Methods for agents to agree on decisions or outcomes.

  • Emergent Behavior: Complex system-level behaviors that arise from the interactions of simpler agents.

  • Orchestration: Managing and coordinating the activities of multiple agents towards a common goal.

Use Cases

Use Case
Description
Benefit
Use Case
Description
Benefit
Use Case
Description
Benefit

Implementation Examples

Example 1: Hierarchical Supervisor/Worker System

This diagram illustrates a hierarchical multi-agent system:

  1. A user query is received by a Supervisor Agent.

  2. The Supervisor Agent breaks down the task and assigns subtasks to Worker Agents.

  3. Each Worker Agent executes its assigned task.

  4. Results from all Worker Agents are collected and returned to the Supervisor.

  5. The Supervisor Agent synthesizes the results and generates a final response.

  6. The final response is presented to the user.

Example 2: Sequential Workflow System

This diagram shows a sequential workflow multi-agent system:

  1. Agent 1 (Market Researcher) collects raw data from various sources like surveys, industry reports, and competitor analyses.

  2. Agent 2 (Data Cleaner) preprocesses the collected data, handling missing values, removing duplicates, and standardizing formats.

  3. Agent 3 (Data Analyst) performs in-depth analysis, identifying trends, correlations, and key insights from the cleaned data.

  4. Agent 4 (Report Writer) generates a detailed market research report based on the analysis, including visualizations and recommendations.

  5. Agent 5 (Quality Assurance Specialist) reviews the report for accuracy, clarity, and completeness.

  6. If the report meets quality standards, it's approved for delivery to the client.

  7. If not, Agent 6 (Editor) revises the report based on feedback, and the process loops back to report generation.

Best Practices

  1. Clearly define roles and responsibilities for each agent in the system.

  2. Implement robust communication protocols between agents.

  3. Design flexible task allocation mechanisms to optimize system performance.

  4. Regularly evaluate and adjust the balance between agent autonomy and central coordination.

  5. Implement mechanisms for conflict resolution and deadlock prevention.

Common Pitfalls and How to Avoid Them

  • Communication Overhead: Optimize inter-agent communication to prevent system slowdown.

  • Conflicting Goals: Ensure alignment of agent objectives with overall system goals.

  • Redundancy and Inefficiency: Implement task tracking to avoid duplication of efforts.

  • Emergent Unintended Behaviors: Regularly monitor and analyze system-level behaviors.

  • Scalability Issues: Design the system architecture to accommodate growth in the number of agents.

Related Tailwinds Topics

  • GenAI University: 301-AI Agents

  • GenAI University: 301-Agent Tools

  • Tailwinds Feature: Sequential Agents

  • Tailwinds Feature: Multi-Agents (Supervisor/Worker)

Collaborative Problem Solving

Multiple agents working together to solve complex, multi-faceted problems.

Leverages diverse expertise for more comprehensive solutions.

Simulated Debates

Agents representing different viewpoints to explore a topic from multiple angles.

Provides balanced and nuanced analysis of complex issues.

Distributed Information Gathering

Agents simultaneously collecting and synthesizing information from various sources.

Accelerates research and provides more comprehensive insights.

please reach out if you need assistance building this!